Let $f(x) = \left\{ {\begin{array}{*{20}{c}}
{\,{x^3} - {x^2} + 10x - 5\,\,,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x \le 1\,\,\,\,\,\,\,\,\,\,\,\,}\\
{ - 2x + {{\log }_2}({b^2} - 2),\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x\, > 1\,\,\,\,\,\,\,\,\,\,\,\,}
\end{array}} \right.$ the set of values of $b$ for which $f(x)$ has greatest value at $x = 1$ is given by
$1 \le b \le 2$
$b = \{ 1,2\} $
$b \in ( - \infty , - 1)$
$\left[ { - \sqrt {130} , - \sqrt 2 } \right) \cup \left( {\sqrt 2 ,\sqrt {130} } \right]$
Let $A=\{0,1,2,3,4,5,6,7\} .$ Then the number of bijective functions $f: A \rightarrow A$such that $f(1)+f(2)=3-f(3)$ is equal to $.....$
If $f(a) = a^2 + a+ 1$ , then number of solutions of equation $f(a^2) = 3f(a)$ is
If $f(x) = \frac{1}{{\sqrt {x + 2\sqrt {2x - 4} } }} + \frac{1}{{\sqrt {x - 2\sqrt {2x - 4} } }}$ for $x > 2$, then $f(11) = $
A real valued function $f(x)$ satisfies the function equation $f(x - y) = f(x)f(y) - f(a - x)f(a + y)$ where a is a given constant and $f(0) = 1$, $f(2a - x)$ is equal to
If $f(x) = \cos (\log x)$, then $f(x)f(y) - \frac{1}{2}[f(x/y) + f(xy)] = $